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RESTRICTION OF A GUICHARDET-WIGNER
PSEUDOCHARACTER ON A SIMPLY CONNECTED
SIMPLE HERMITIAN SYMMETRIC LIE GROUP
TO A SIMPLY CONNECTED SIMPLE HERMITIAN
SYMMETRIC SUBGROUP

A. I. SHTERN

ABSTRACT. A simple example shows that the restriction of a Guichardet—
Wigner pseudocharacter on a simply connected simple Hermitian symmetric
Lie group to a simply connected simple Hermitian symmetric subgroup can
be a Guichardet—Wigner pseudocharacter on the subgroup. This poses the
natural problem of whether or not such a restriction can give a zero real

character.

For the definitions and details concerning pseudocharacters and quasichar-
acters, see [1-3].

§ 1. INTRODUCTION

The role of Guichardet—Wigner pseudocharacters on Hermitian symmetric
connected Lie groups in the description of locally bounded finite-dimensional
pseudorepresentations of these groups is significant (see [1-4]). In this con-
nection, there is a natural problem concerning the restriction of a Guichar-
det—Wigner pseudocharacter on a simply connected simple Hermitian sym-
metric Lie group to a simply connected simple Hermitian symmetric Lie
subgroup. In principle, this restriction can be either a Guichardet—Wigner
pseudocharacter on the subgroup or a zero real character. The present paper
shows that, for one of the simplest situations, the first possibility holds.
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§ 2. PRELIMINARIES
Recall the definition of the main object of the paper.

Definition. Let G be a connected simply connected simple Lie group whose
center is infinite (and thus, as is well known, the corresponding symmetric
space is Hermitian symmetric; see, e.g., [1]) and let K be an analytic sub-
group of G corresponding to a maximal compact Lie subalgebra of the Lie
algebra of the Lie group G. Let us isomorphically identify the center Zg
of the analytic group K with the additive group of the real field R (for
instance, by the arc length on the one-parameter subgroup defined by the
subgroup Zr). Consider the Iwasawa decomposition G = K AN related to
the group K. Let A be the Abelian group and N the nilpotent group in this
decomposition and let

g = k(g)an, geG, k(gje K, a€A, néeN,

be the corresponding decomposition of an element g € G. As is well known,
the mapping
wig—k(g), g€G,

taking every element g € G to the “compact” component k(g) € K of the
Iwasawa decomposition is continuous. Consider the composition 1 of the
mapping

wig—k(g), geG,

and the continuous projection 7 taking every element k € K to its central
component z(k) € Zx. As was proved in [1-3], this composition

Y=mow

defines a quasicharacter on G. The pseudocharacter 6 corresponding to
this quasicharacter is referred to as the Guichardet—Wigner pseudocharac-
ter, cf. [1].

§ 3. MAIN THEOREM

Theorem. Let G be the universal covering group of SU(m,n), m,n € N,
m > 2, let H C G be the group isomorphic to the universal covering group
of SU(m — 1,n), where the matrices of the natural homomorphism of H into
SU(m,n) are distinguished by the condition that the entry of every matriz



Lie group to a simply connected simple Hermitian symmetric subgroup

in the image of this mapping at the upper left corner is equal to one. Then
the restriction of every Guichardet—Wigner pseudocharacter on G to H is a
nontrivial Guichardet-Wigner pseudocharacter on H.

Proof. Let us use the explicit formulas of [5], p. 286, for the corresponding
2-cocycle; these formulas claim that, for the function v/(g) = det g11, where

g€ Gandg= (i; ?:2 ) according to p+ ¢ block decomposition, we have the
formula
1 _
I (91,92) = - arg(v'(g1)v'(92)v'(9192) 1), 91,92 € G,

and there is a quasicharacter (see [1]) corresponding to a continuous branch
of the right-hand side which exists by the Guichardet—Wigner theorem; the
pseudocharacter corresponding to this quasicharacter is a Guichardet—Wig-
ner pseudocharacter on G (defined up to a constant multiple). It follows
immediately from the above formula that the restriction of f to H is un-
bounded (this can be seen from the consideration of a subgroup SU(1,1)
defined by the last p-index and the first ¢g-index), and hence the pseudochar-
acter corresponding to f|m is nonzero. Since every pseudocharacter on a
simple Hermitian symmetric simply connected Lie group is a nonzero multi-
ple of a Guichardet—Wigner pseudocharacter, it follows that the restriction
of the Guichardet—Wigner pseudocharacter on G to the subgroup H is a
Guichardet—Wigner pseudocharacter on H.

§ 4. CONCLUDING REMARKS

Problem. There is a natural problem concerning the restriction of a Gui-
chardet—Wigner pseudocharacter on a simply connected simple Hermitian
symmetric Lie group to a simply connected simple Hermitian symmetric Lie
subgroup. The above theorem shows that this restriction can be a Guichardet
Wigner pseudocharacter on the subgroup. The problem is, whether or not this
restriction can be a zero real character on the subgroup.
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